The role of motor variability in motor control and learning depends on the nature of the task and the individual’s capabilities

Authors

  • Carla Caballero Sánchez Asociación Española de Ciencias del Deporte
  • Francisco Javier Moreno
  • Raúl Reina Vaíllo
  • Alba Roldán Romero
  • Álvaro Coves
  • David Barbado Murillo

Abstract

Recent studies have found that motor variability is actively regulated as an exploration tool to promote learning in reward and error-based tasks. Based on this functional role of variability, several researches have manipulated motor variability by practicing in order to maximize learning processes. However, the effectiveness of such variable practice as a tool to improve motor performance has shown several controversial results. The present work reviews how the interaction between the features of individuals with different motor capabilities (i.e. experience and brain disorders) and task constraints modulates the relation between motor variability and motor control and learning. Examining how the process of skill learning can be improved by the variability modulation according to individuals’ is not only of theoretical interest, but may also have several practical implications in motor learning and neuro-rehabilitation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Andalman, A. S., & Fee, M. S. (2009). A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors. Proceedings of the National Academy of Science U S A, 106(30), 12518-12523. doi:10.1073/pnas.0903214106

Barbado, D., Caballero, C., Moreside, J. M., Vera-García, F. J., & Moreno, F. J. (2017). Can be the structure of motor variability predict learning rate? Journal of Experimental Psychology: Human Perception and Performance, 43(3), 596-607.

Barbado, D., Sabido, R., Vera-Garcia, F. J., Gusi, N., & Moreno, F. J. (2012). Effect of increasing difficulty in standing balance tasks with visual feedback on postural sway and EMG: complexity and performance. Human of Movement Science, 31(5), 1224-1237. doi:10.1016/j.humov.2012.01.002

Bauer, H. U., & Schöllhorn, W. (1997). Self-Organizing Maps for the Analysis of Complex Movement Patterns. Neural Processing Letters, 5, 193-199.

Borg, F. G., & Laxaback, G. (2010). Entropy of balance--some recent results. Journal of Neuroengineering and Rehabilitation, 7, 38. doi:10.1186/1743-0003-7-38

Brady, F. (2004). Contextual interference: a meta-analytic study. Perceptual Motor Skills, 99(1), 116-126. doi:10.2466/pms.99.1.116-126

Broersen, R., Onuki, Y., Abdelgabar, A. R., Owens, C. B., Picard, S., Willems, J., . . . De Zeeuw, C. I. (2016). Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6. PLoS One, 11(8), e0162042. doi:10.1371/journal.pone.0162042

Caballero, C., Barbado, D., Davids, K., & Moreno, F. J. (2016). Variations in task constraints shape emergent performance outcomes and complexity levels in balancing. Experimental Brain Research, 234(6), 1611-1622. doi:10.1007/s00221-016-4563-2

Caballero, C., Barbado, D., & Moreno, F. J. (2014). Non-linear tools and methodological concerns measuring human movement variability: an overview. European Journal of Human Movement, 32, 61-81.

Caballero, C., Barbado, D., & Moreno, F. J. (2015). What COP and Kinematic Parameters Better Characterize Postural Control in Standing Balance Tasks? Journal of Motor Behavior, 47(6), 550-562. doi:10.1080/00222895.2015.1014545

Chu, V. W., Sternad, D., & Sanger, T. D. (2013). Healthy and dystonic children compensate for changes in motor variability. Journal of Neurophysiology, 109(8), 2169-2178. doi:10.1152/jn.00908.2012

Churchland, M. M., Afshar, A., & Shenoy, K. V. (2006). A central source of movement variability. Neuron, 52(6), 1085-1096. doi:10.1016/j.neuron.2006.10.034

Damiano, D. L., Stanley, C. J., Ohlrich, L., & Alter, K. E. (2017). Task-Specific and Functional Effects of Speed-Focused Elliptical or Motor-Assisted Cycle Training in Children With Bilateral Cerebral Palsy: Randomized Clinical Trial. Neurorehabilitation and Neural Repair, 1545968317718631. doi:10.1177/1545968317718631

Davids, K., Bennett, S., & Newell, K. M. (2006). Movement system variability. Champaign: Human kinetics.

Davids, K., Glazier, P., Araujo, D., & Bartlett, R. (2003). Movement systems as dynamical systems: the functional role of variability and its implications for sports medicine. Sports Medicine, 33(4), 245-260.

Dhawale, A. K., Smith, M. A., & Olveczky, B. P. (2017). The Role of Variability in Motor Learning. Annual Review of Neuroscience, 40. doi:10.1146/annurev-neuro-072116-031548

Douvis, S. J. (2005). Variable practice in learning the forehand drive in tennis. Perceptual Motor Skills, 101(2), 531-545. doi:10.2466/pms.101.2.531-545

Duarte, M., & Sternad, D. (2008). Complexity of human postural control in young and older adults during prolonged standing. Experimental Brain Research, 191(3), 265-276. doi:10.1007/s00221-008-1521-7

Edwards, C., & Hodges, N. (2012). Acquiring a novel coordination movement with non-task goal related variability. The Open Sports Sciences Journal, 5, 1-M7.

Eidson, T. A., & Stadulis, R. E. ( 1991). Effects of variability of practice on the transfer and performance of open and closed motor skills. Adapted physical activity quarterly,, 8(4), 342-356.

Elfaqir, F. (1982). Effet de la specificit& et de la variabilite de la pratique sur l’apprentissage dun geste global [The effect of specificity and variability of practice on the acquisition of a gross motor skill]. Unpublished thesis (MSC. Physical Education), University of Montreal, Montreal, Canada.

Faisal, A. A., Selen, L. P., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Review of Neuroscience, 9(4), 292-303. doi:10.1038/nrn2258

Gagnon, C., Lavoie, C., Lessard, I., Mathieu, J., Brais, B., Bouchard, J. P., . . . Lambercy, O. (2014). The Virtual Peg Insertion Test as an assessment of upper limb coordination in ARSACS patients: a pilot study. Journal of Neurology Science, 347(1-2), 341-344. doi:10.1016/j.jns.2014.09.032

Garcia-Herrero, J. A., Sabido, R., Barbado, D., Martinez, I., & Moreno, F. J. (2016). The load of practice variability must be regulated in relation with learner expertise. International Journal of Sport Psychology, 47(6), 559-570.

Gentile, A. M. (1972). A working model of skill acquisition with application to teaching. Quest,, 17(1), 3-23.

Gofer-Levi, M., Silberg, T., Brezner, A., & Vakil, E. (2013). Deficit in implicit motor sequence learning among children and adolescents with spastic cerebral palsy. Research in developmental disabilities 34(11), 3672-3678.

Goldberger, A. L., Peng, C. K., & Lipsitz, L. A. (2002). What is physiologic complexity and how does it change with aging and disease? Neurobiology of Aging, 23(1), 23-26.

Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780-784. doi:10.1038/29528

Hernandez-Davo, H., Urban, T., Sarabia, J. M., Juan-Recio, C., & Moreno, F. J. (2014). Variable training: effects on velocity and accuracy in the tennis serve. Journal of Sports Science, 32(14), 1383-1388. doi:10.1080/02640414.2014.891290

Hung, Y. C., & Gordon, A. M. (2013). Motor learning of a bimanual task in children with unilateral cerebral palsy. Res Dev Disabil, 34(6), 1891-1896. doi:10.1016/j.ridd.2013.03.008

Izawa, J., & Shadmehr, R. (2011). Learning from sensory and reward prediction errors during motor adaptation. PLoS Computational Biology, 7(3), e1002012. doi:10.1371/journal.pcbi.1002012

Johnson, R., & McCabe, J. (1982). Schema theory: A test of the hypothesis, variation in practice. Perceptual and Motor Skills, 55(1), 231-234.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: a survey. Journal of artificial intelligence research, 4(237–285).

Kerr, R., & Booth, B. (1978). Specific and varied practice of motor skill. Percept Mot Skills, 46(2), 395-401.

Lee, T. D., Magill, R. A., & Weeks, D. J. (1985). Influence of practice schedule on testing schema theory predictions in adults. Journal of motor behavior, 17(3), 283-299.

Mandelblat-Cerf, Y., Paz, R., & Vaadia, E. (2009). Trial-to-trial variability of single cells in motor cortices is dynamically modified during visuomotor adaptation. The Journal of Neuroscience, 29(48), 15053-15062.

Manor, B., Costa, M. D., Hu, K., Newton, E., Starobinets, O., Kang, H. G., . . . Lipsitz, L. A. (2010). Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. Journal of Applied Physiology (1985), 109(6), 1786-1791. doi:10.1152/japplphysiol.00390.2010

Menayo, R., Moreno, F., Fuentes, J., Reina, R., & Damas, J. S. (2012 ). Relationship between motor variability, accuracy and ball speed in the tennis serve. Journal of Human Kinetics,, 33, 45-53.

Moreno, F. J., & Ordoño, E. M. (2015). Variability and practice load in motor learning. RICYDE. Revista Internacional de Ciencias del Deporte, 39(11), 62-78.

Moreno, F. J., Peláez, M., Urbán, T., & Reina, R. (2011). Different levels of variability versus specificity of practice applied to increase the performance under statics task constraints. Paper presented at the In 16th Annual European Congress of Sport Sciences Liverpool., Liverpool.

Morton, S. M., & Bastian, A. J. (2004). Cerebellar control of balance and locomotion. Neuroscientist, 10(3), 247-259. doi:10.1177/1073858404263517

Newell, K. M., & Vaillancourt, D. E. (2001). Dimensional change in motor learning. Human of Movement Science, 20(4-5), 695-715.

Osborne, L. C., Lisberger, S. G., & Bialek, W. (2005). A sensory source for motor variation. Nature, 437(7057), 412-416. doi:10.1038/nature03961

Pekny, S. E., Izawa, J., & Shadmehr, R. (2015). Reward-dependent modulation of movement variability. Journal of Neuroscience, 35(9), 4015-4024. doi:10.1523/JNEUROSCI.3244-14.2015

Pigott, R. E., & Shapiro, D. C. (1984). Motor schema: The structure of the variability session. Research quarterly for exercise and sport, 55(1), 41-45.

Ramayya, A. G., Misra, A., Baltuch, G. H., & Kahana, M. J. (2014). Microstimulation of the human substantia nigra alters reinforcement learning. Journal of Neuroscience, 34(20), 6887-6895. doi:10.1523/JNEUROSCI.5445-13.2014

Ranganathan, R., & Newell, K. M. (2013). Changing up the routine: intervention-induced variability in motor learning. Exercise and sport sciences reviews, 41(1), 64-70.

Reina, R., Sarabia, J. M., Yanci, J., Garcia-Vaquero, M. P., & Campayo-Piernas, M. (2015). Change of Direction Ability Performance in Cerebral Palsy Football Players According to Functional Profiles. Frontiers in Physiology, 6, 409. doi:10.3389/fphys.2015.00409

Renart, A., & Machens, C. K. (2014). Variability in neural activity and behavior. Current Opinion in Neurobiology, 25, 211-220. doi:10.1016/j.conb.2014.02.013

Riley, M. A., & Turvey, M. T. (2002). Variability of determinism in motor behavior. Journal of Motor Behavior, 34(2), 99-125. doi:10.1080/00222890209601934

Savelsbergh, G. J., Kamper, W. J., Rabius, J., De Koning, J. J., & Schöllhorn, W. ( 2010). A new method to learn to start in speed skating: A differencial learning approach. International Journal of Sport Psychology, 41(4)), 415-427.

Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82(4), 225-260.

Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., & Quinn, J. T., Jr. (1979). Motor-output variability: a theory for the accuracy of rapid motor acts. Psychology Review, 47(5), 415-451.

Schollhorn, W. I., Beckmann, H., & Davids, K. (2010). Exploiting system fluctuations. Differential training in physical prevention and rehabilitation programs for health and exercise. Medicina (Kaunas), 46(6), 365-373.

Schöllhorn, W. I., Beckmann, H., Janssen, D., & Drepper, J. (2010). Stochastic perturbations in athletics field events enhance skill acquisition. In I. Renshaw, K. Davids, & G. J. Savelsbergh (Eds.), Motor learning in practice: A constraints-led approach. Chicago: Routledge.

Seifert, L., Button, C., & Davids, K. (2013). Key properties of expert movement systems in sport: an ecological dynamics perspective. Sports Medicine, 43(3), 167-178. doi:10.1007/s40279-012-0011-z

Shadmehr, R., Huang, H. J., & Ahmed, A. A. (2016). A representation of effort in decision-making and motor control. Current biology, 26(14), 1929-1934.

Shapiro, D., Schmidt, R., Kelso, J., & Clark, J. (1982). The schema theory: Recent evidence and developmental implications. The development of movement control and coordination, 113-150.

Shea, C. H., Lai, Q., Wright, D. L., Immink, M., & Black, C. (2001). Consistent and variable practice conditions: effects on relative and absolute timing. Journal of Motor Behavior, 33(2), 139-152. doi:10.1080/00222890109603146

Shishov, N., Melzer, I., & Bar-Haim, S. (2017). Parameters and Measures in Assessment of Motor Learning in Neurorehabilitation; A Systematic Review of the Literature. Frontiers in Human Neuroscience, 11, 82. doi:10.3389/fnhum.2017.00082

Shmuelof, L., Krakauer, J. W., & Mazzoni, P. (2012). How is a motor skill learned? Change and invariance at the levels of task success and trajectory control. Journal of Neurophysiology, 108(2), 578-594. doi:10.1152/jn.00856.2011

Sober, S. J., Wohlgemuth, M. J., & Brainard, M. S. (2008). Central contributions to acoustic variation in birdsong. Journal of Neuroscience, 28(41), 10370-10379. doi:10.1523/JNEUROSCI.2448-08.2008

Stein, R. B., Gossen, E. R., & Jones, K. E. (2005). Neuronal variability: noise or part of the signal? Nature Review Neuroscience, 6(5), 389-397. doi:10.1038/nrn1668

Stergiou, N., & Decker, L. M. (2011). Human movement variability, nonlinear dynamics, and pathology: is there a connection? Human Movement Science, 30(5), 869-888. doi:10.1016/j.humov.2011.06.002

Stergiou, N., Harbourne, R., & Cavanaugh, J. (2006). Optimal movement variability: a new theoretical perspective for neurologic physical therapy. Journal of Neurologic Physical Therapy, 30(3), 120-129.

Stins, J. F., Michielsen, M. E., Roerdink, M., & Beek, P. J. (2009). Sway regularity reflects attentional involvement in postural control: effects of expertise, vision and cognition. Gait & Posture, 30(1), 106-109. doi:10.1016/j.gaitpost.2009.04.001

Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (Vol. 135). Cambridge: MIT Press.

Therrien, A. S., Wolpert, D. M., & Bastian, A. J. (2016). Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise. Brain, 139(Pt 1), 101-114. doi:10.1093/brain/awv329

Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2003). Self-organization of cognitive performance. Journal of Experimental Psychology: General, 132(3), 331-350. doi:10.1037/0096-3445.132.3.331

Van Rossum, J. H. (1990). Schmidt's schema theory: The empirical base of the variability of practice hypothesis: A critical analysis. Human Movement Science, 9(3), 387-435.

Warren, T. L., Tumer, E. C., Charlesworth, J. D., & Brainard, M. S. (2011). Mechanisms and time course of vocal learning and consolidation in the adult songbird. Journal of Neurophysiology, 106(4), 1806-1821. doi:10.1152/jn.00311.2011

Washburn, A., Coey, C. A., Romero, V., Malone, M., & Richardson, M. J. (2015). Interaction between intention and environmental constraints on the fractal dynamics of human performance. Cognitive Processing, 16(4), 343-350. doi:10.1007/s10339-015-0652-6

Woolley, S. C., & Doupe, A. J. (2008). Social context-induced song variation affects female behavior and gene expression. PLoS Biology, 6(3), e62. doi:10.1371/journal.pbio.0060062

Wrisberg, C. A., & Mead, B. J. (1981). Anticipation of coincidence in children: A test of schema theory. Perceptual and Motor Skills, 52(2), 599-606.

Wrisberg, C. A., & Mead, B. J. (1983). Developing coincident timing skill in children: A comparison of training methods. Research quarterly for exercise and sport, 54(1), 67-74.

Wu, H. G., Miyamoto, Y. R., Gonzalez Castro, L. N., Olveczky, B. P., & Smith, M. A. (2014). Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nature Neuroscience, 17(2), 312-321. doi:10.1038/nn.3616

Wulf, G. (1991). The effect of type of practice on motor learning in children Applied Cognitive Psychology, 5(2), 123-134.

Wulf, G., & Schmidt, R. A. (1994). Feedback-Induced Variability and the Learning of Generalized Motor Programs. Journal of Motor Behavior, 26(4), 348-361. doi:10.1080/00222895.1994.9941691

Zhou, J., Manor, B., Liu, D., Hu, K., Zhang, J., & Fang, J. (2013). The complexity of standing postural control in older adults: a modified detrended fluctuation analysis based upon the empirical mode decomposition algorithm. PLoS One, 8(5), e62585. doi:10.1371/journal.pone.0062585

Zipp, G. P., & Gentile, A. (2010). Practice schedule and the learning of motor skills in children and adults: teaching implications. Journal of college Teaching and Learning, 7(2), 35.

Downloads

Published

2017-07-19

Issue

Section

European Journal of Human Movement

Most read articles by the same author(s)