Acute physiological responses during crossfit® workouts


  • Jaime Fernández Fernández Sports Research Centre, Miguel Hernandez University, Elche
  • Rafael Sabido Solana Sports Research Centre, Miguel Hernandez University, Elche
  • Diego Moya Master in Sports Performance and Health, Miguel Hernandez University, Elche
  • Jose Manuel Sarabia Marin Sports Research Centre, Miguel Hernandez University, Elche
  • Manuel Moya Ramón Sports Research Centre, Miguel Hernandez University, Elche


The aims of the present study were to describe the acute physiological and perceptual response of two typical CrossFit® workouts of the day (WODs) and to investigate whether the physical demands of these WODs meet the criteria laid down by the ACSM to improving and maintaining cardiovascular fitness in healthy adults. Methodology: ten healthy subjects (Age: 30±4.2 years) volunteered to participate in a study including laboratory incremental treadmill test and two CrossFit® WODs (e.g., “Fran” and “Cindy”). Measurements included subjects’ oxygen uptake (VO2), heart rate (HR), blood lactate (LA) and ratings of perceived exertion (RPE). Results: significant differences (P<0.001; ES=1.0) were found for average VO2 (34.4±3.5 vs. 29.1±1.1 ml·kg-1·min-1), %VO2max (66.2±4.8 vs, 56.7±6.2%) and EE (318.2±32.5 vs. 121.0±38.5 kcal·min-1; P<0.001; ES=3.8) with “Cindy” workout showing higher values, while “Fran” resulted in significantly time spent above 1 (76.0±29.7 vs, 47.7±21.4 %; P<0.05; ES=0.7). Conclusion:  the acute physiological demands of the CrossFit® WODs analyzed meet the ACSM guidelines for energy expenditure and exercise intensity in healthy adults, although due to the high intensity of the workouts analyzed (90-95% of HRmax; LA values >10 mmol-1; RPE values >8), together with the lack of research in this topic, the safety has not been defined for such programs.


Download data is not yet available.


Metrics Loading ...


Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med, 43(10), 927-954. doi: 10.1007/s40279-013-0066-5

Butcher, S. J., Neyedly, T. J., Horvey, K. J., & Benko, C. R. (2015). Do physiological measures predict selected CrossFit® benchmark performance? Open access journal of sports medicine, 6, 241.

Foster, C., Florhaug, J. A., Franklin, J., Gottschall, L., Hrovatin, L. A., Parker, S., . . . Dodge, C. (2001). A new approach to monitoring exercise training. The Journal of Strength & Conditioning Research, 15(1), 109-115.

Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., . . . American College of Sports, M. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc, 43(7), 1334-1359. doi: 10.1249/MSS.0b013e318213fefb

Gibala, M. J., & Jones, A. M. (2013). Physiological and performance adaptations to high-intensity interval training. Nestle Nutr Inst Workshop Ser, 76, 51-60. doi: 10.1159/000350256

Gibala, M. J., & McGee, S. L. (2008). Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev, 36(2), 58-63. doi: 10.1097/JES.0b013e318168ec1f

Gillen, J. B., & Gibala, M. J. (2014). Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab, 39(3), 409-412. doi: 10.1139/apnm-2013-0187

Glassman, G. (2007). Understanding CrossFit. CrossFit Journal, 1.

Glassman, G. (2011). CrossFit level 1 training guide. CrossFit Journal.

Hak, P. T., Hodzovic, E., & Hickey, B. (2013). The nature and prevalence of injury during CrossFit training. J Strength Cond Res. doi: 10.1519/jsc. 0000000000000318

Heinrich, K. M., Patel, P. M., O'Neal, J. L., & Heinrich, B. S. (2014). High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: an intervention study. BMC Public Health, 14, 789. doi: 10.1186/1471-2458-14-789

Hood, M. S., Little, J. P., Tarnopolsky, M. A., Myslik, F., & Gibala, M. J. (2011). Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc, 43(10), 1849-1856. doi: 10.1249/MSS.0b013e 3182199834

Hopkins, W. G. (2000). Measures of reliability in sports medicine and science. Sports medicine, 30(1), 1-15.

Hunter, G. R., Wetzstein, C. J., Fields, D. A., Brown, A., & Bamman, M. M. (2000). Resistance training increases total energy expenditure and free-living physical activity in older adults. J Appl Physiol (1985), 89(3), 977-984.

Mazzetti, S., Wolff, C., Yocum, A., Reidy, P., Douglass, M., & Cochran, M. (2011). Effect of maximal and slow versus recreational muscle contractions on energy expenditure in trained and untrained men. The Journal of sports medicine and physical fitness, 51(3), 381-392.

Medicine, A. C. o. S. (2013). ACSM's guidelines for exercise testing and prescription: Lippincott Williams & Wilkins.

Meirelles, C. d. M., & Gomes, P. S. C. (2004). Acute effects of resistance exercise on energy expenditure: revisiting the impact of the training variables. Revista Brasileira de Medicina do Esporte, 10(2), 122-130.

Myers, J., Prakash, M., Froelicher, V., Do, D., Partington, S., & Atwood, J. E. (2002). Exercise capacity and mortality among men referred for exercise testing. New England Journal of Medicine, 346(11), 793-801.

Paine, M. J., Uptgraft, M. J., & Wylie, M. R. (2010). CrossFit study. Command and General Staff College, 1-34.

Ratamess, N. A., Rosenberg, J. G., Kang, J., Sundberg, S., Izer, K. A., Levowsky, J., . . . Faigenbaum, A. D. (2014). Acute Oxygen Uptake and Resistance Exercise Performance Using Different Rest Interval Lengths: The Influence of Maximal Aerobic Capacity and Exercise Sequence. Journal of strength and conditioning research/National Strength & Conditioning Association.

Robergs, R. A., Gordon, T., Reynolds, J., & Walker, T. B. (2007). Energy expenditure during bench press and squat exercises. The Journal of Strength & Conditioning Research, 21(1), 123-130.

Skelly, L. E., Andrews, P. C., Gillen, J. B., Martin, B. J., Percival, M. E., & Gibala, M. J. (2014). High-intensity interval exercise induces 24-h energy expenditure similar to traditional endurance exercise despite reduced time commitment. Appl Physiol Nutr Metab, 39(7), 845-848. doi: 10.1139/apnm-2013-0562

Smith, M. M., Sommer, A. J., Starkoff, B. E., & Devor, S. T. (2013). Crossfit-based high-intensity power training improves maximal aerobic fitness and body composition. J Strength Cond Res, 27(11), 3159-3172. doi: 10.1519/JSC. 0b013e318289e59f

Stiegler, P., & Cunliffe, A. (2006). The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports medicine, 36(3), 239-262.

Tanner, R. K., Fuller, K. L., & Ross, M. L. (2010). Evaluation of three portable blood lactate analysers: Lactate Pro, Lactate Scout and Lactate Plus. Eur J Appl Physiol, 109(3), 551-559. doi: 10.1007/s00421-010-1379-9

Thompson, P. D., Arena, R., Riebe, D., Pescatello, L. S., & American College of Sports, M. (2013). ACSM's new preparticipation health screening recommendations from ACSM's guidelines for exercise testing and prescription, ninth edition. Curr Sports Med Rep, 12(4), 215-217. doi: 10.1249/JSR.0b013e31829a68cf

Thornton, M. K., & Potteiger, J. A. (2002). Effects of resistance exercise bouts of different intensities but equal work on EPOC. Med Sci Sports Exerc, 34(4), 715-722.

Weisenthal, B. M., Beck, C. A., Maloney, M. D., DeHaven, K. E., & Giordano, B. D. (2014). Injury Rate and Patterns Among CrossFit Athletes. Orthopaedic Journal of Sports Medicine, 2(4), 2325967114531177.






Original Research