Estimation of an elite road cyclist mechanical power and energy cost wearing standard and aero helmets: an analytical procedure and numerical simulations approach


  • Pedro Forte Douro Higher Institute of Educational Sciences
  • Daniel A. Marinho University of Beira Interior
  • Tiago M. Barbosa Instituto Politécnico de Bragança
  • Jorge E. Morais Instituto Politécnico de Bragança



cycling; helmets; cfd; power; energy cost.


The aim of this study was to assess and compare by numerical simulations and analytical models the resistive forces, mechanical power and energy cost using two different types of road helmets (standard vs aero road helmet). An elite cyclist was scanned on the racing bicycle, wearing his competition gear and helmets. Numerical simulations by Computational Fluid Dynamics were carried-out at 11.11 m/s (40 km/h) and 20.83 m/s (75 km/) to extract the drag force. The mechanical power and energy cost were estimated by analytical procedures. The drag force were between 9.93 N and 66.96 N across the selected speeds and helmets. The power to overcome drag were 182.19 W and 1121.40 W. The total power lower and higher values were 271.05 W and 1558.02 W. The energy cost estimation was between 106.89 J/m and 381.40 J/m across the different speeds and helmets. The standard helmet imposed higher drag and demanded more power.


Download data is not yet available.


Metrics Loading ...


Aroussi, A., Kucukgokoglan, S., Pickering, S. J., & Menacer, M. (2001). Evaluation of four turbulence models in the interaction of multi burners swirling flows. 9.

Barbosa, T. M., Forte, P., Estrela, J. E., & Coelho, E. (2016). Analysis of the Aerodynamics by Experimental Testing of an Elite Wheelchair Sprinter. Procedia Engineering, 147, 2–6.

Barelle, C., Chabroux, V., & Favier, D. (2010). Modelling of the time trial cyclist projected frontal area incorporating anthropometric, postural and helmet characteristics. Sports Engineering, 12(4), 199–206.

Beaumont, F., Taiar, R., Polidori, G., Trenchard, H., & Grappe, F. (2018). Aerodynamic study of time-trial helmets in cycling racing using CFD analysis. Journal of Biomechanics, 67, 1–8.

Bertucci, W. M., Betik, A. C., Duc, S., & Grappe, F. (2012). Gross efficiency and cycling economy are higher in the field as compared with on an Axiom stationary ergometer. Journal of Applied Biomechanics, 28(6), 636–644.

Blocken, B., Defraeye, T., Koninckx, E., Carmeliet, J., & Hespel, P. (2013). CFD simulations of the aerodynamic drag of two drafting cyclists. Computers & Fluids, 71, 435–445.

Blocken, B., van Druenen, T., Toparlar, Y., Malizia, F., Mannion, P., Andrianne, T., … Diepens, J. (2018). Aerodynamic drag in cycling pelotons: New insights by CFD simulation and wind tunnel testing. Journal of Wind Engineering and Industrial Aerodynamics, 179, 319–337.

Blocken, B., van Druenen, T., Toparlar, Y., & Andrianne, T. (2018b). Aerodynamic analysis of different cyclist hill descent positions. Journal of Wind Engineering and Industrial Aerodynamics, 181, 27-45.

Brühwiler, P. A., Buyan, M., Huber, R., Bogerd, C. P., Sznitman, J., Graf, S. F., & Rösgen, T. (2006). Heat transfer variations of bicycle helmets. Journal of Sports Sciences, 24(9), 999–1011.

Burke, E. (2003). High-tech Cycling. Human Kinetics. Champaing, IL.

Candau, R. B., Grappe, F., Menard, M., Barbier, B., Millet, G. Y., Hoffman, M. D., Rouillon, J. D. (1999). Simplified deceleration method for assessment of resistive forces in cycling. Medicine and Science in Sports and Exercise, 31(10), 1441–1447.

Chowdhury, H. (2012). Aerodynamic design of sports garments. Applied aerodynamics, 21-40. Lerner, J. C. & Boldes, U. (Ed.), IntechOpen, Rijeka, Croatia.

Debraux, P., Grappe, F., Manolova, A. V., & Bertucci, W. (2011). Aerodynamic drag in cycling: methods of assessment. Sports Biomechanics, 10(3), 197–218.

Defraeye, T., Blocken, B., Koninckx, E., Hespel, P., & Carmeliet, J. (2010a). Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests. Journal of Biomechanics, 43(7), 1262–1268.

Defraeye, T., Blocken, B., Koninckx, E., Hespel, P., & Carmeliet, J. (2010b). Computational fluid dynamics analysis of cyclist aerodynamics: Performance of different turbulence-modelling and boundary-layer modelling approaches. Journal of Biomechanics, 43(12), 2281–2287.

di Prampero, P. E. (1986). The energy cost of human locomotion on land and in water. International Journal of Sports Medicine, 7(2), 55–72.

Dorel, S., Hautier, C. A., Rambaud, O., Rouffet, D., Praagh, E. V., Lacour, J.-R., & Bourdin, M. (2005). Torque and Power-Velocity Relationships in Cycling: Relevance to Track Sprint Performance in World-Class Cyclists. International Journal of Sports Medicine, 26(9), 739–746.

Edwards, A. G., & Byrnes, W. C. (2007). Aerodynamic characteristics as determinants of the drafting effect in cycling. Medicine and Science in Sports and Exercise, 39(1), 170–176.

El Helou, N., Berthelot, G., Thibault, V., Tafflet, M., Nassif, H., Campion, F., Toussaint, J.F. (2010). Tour de France, Giro, Vuelta, and classic European races show a unique progression of road cycling speed in the last 20 years. Journal of Sports Sciences, 28(7), 789–796.

Ettema, G., & Lorås, H. W. (2009). Efficiency in cycling: a review. European Journal of Applied Physiology, 106(1), 1–14.

Faria, E. W., Parker, D. L., & Faria, I. E. (2005). The science of cycling: factors affecting performance - part 2. Sports Medicine, 35(4), 313–337.

Forte, P., Marinho, D. A., Morouço, P. G., & Barbosa, T. (2016). CFD analysis of head and helmet aerodynamic drag to wheelchair racing. 2016 1st International Conference on Technology and Innovation in Sports, Health and Wellbeing (TISHW), 1–6.

Forte, P., Marinho, D. A., Morouço, P., Pascoal-Faria, P., & Barbosa, T. M. (2017). Comparison by computer fluid dynamics of the drag force acting upon two helmets for wheelchair racers. AIP Conference Proceedings, 1863(1), 520005.

Forte, Pedro., Barbosa, T. M., & Marinho, D. A. (2015). Technologic Appliance and Performance Concerns in Wheelchair Racing – Helping Paralympic Athletes to Excel. New Perspectives in Fluid Dynamics, 101–121. Chaoqun Liu (Ed.), IntechOpen, Rijeka, Croatia.

Forte, Pedro, Marinho, D. A., Morais, J. E., Morouço, P. G., & Barbosa, T. M. (2018a). The variations on the aerodynamics of a world-ranked wheelchair sprinter in the key-moments of the stroke cycle: A numerical simulation analysis. PLOS ONE, 13(2), e0193658.

Forte, P., Marinho, D. A., Morais, J. E., Morouço, P. G., & Barbosa, T. M. (2018b). Estimation of mechanical power and energy cost in elite wheelchair racing by analytical procedures and numerical simulations. Computer Methods in Biomechanics and Biomedical Engineering, 21(10), 585-592.

García-López, J., Rodríguez-Marroyo, J. A., Juneau, C.-E., Peleteiro, J., Martínez, A. C., & Villa, J. G. (2008). Reference values and improvement of aerodynamic drag in professional cyclists. Journal of Sports Sciences, 26(3), 277–286.

González‐Haro, C., Ballarini, P. A. G., Soria, M., Drobnic, F., & Escanero, J. F. (2007). Comparison of nine theoretical models for estimating the mechanical power output in cycling. British Journal of Sports Medicine, 41(8), 506–509.

Grappe, F., Candau, R., Barbier, B., Hoffman, M. D., Belli, A., & Rouillon, J.D. (1999). Influence of tyre pressure and vertical load on coefficient of rolling resistance and simulated cycling performance. Ergonomics, 42(10), 1361–1371.

Grappe, F., Candau, R., Belli, A., & Rouillon, J. D. (1997). Aerodynamic drag in field cycling with special reference to the Obree’s position. Ergonomics, 40(12), 1299–1311.

Gross, A. C., Kyle, C. R., & Malewicki, D. J. (1983). The Aerodynamics of Human-powered Land Vehicles. Scientific American, 249(6), 142–153.

Kennedy, M. D., & Lampe, W. N. (2013). Applied Ergonomics of Cycling Performance. Handbook of Ergonomics in Sport and Exercise, 115-127. Youlian Hong (Ed.). Routledge, Abingdon, UK.

Kulfan, B. (2000). Assessment of CFD predictions of viscous drag. Fluids 2000 Conference and Exhibit, 2391. Drive, A. B (Ed.). American Institute of Aeronautics and Astronautics, Denver, CO, U.S.A.

Kyle, C. R., & Burke, E. (1984). Improving the racing bicycle. Mechanical engineering, 106(9), 34–45.

Lucia, A., Earnest, C., & Arribas, C. (2003). The Tour de France: a physiological review. Scandinavian Journal of Medicine & Science in Sports, 13(5), 275–283.

Lukes, R. A., Chin, S. B., & Haake, S. J. (2005). The understanding and development of cycling aerodynamics. Sports Engineering, 8(2), 59–74.

Belli, A., & Hintzy, F. (2002). Influence of pedalling rate on the energy cost of cycling in humans. European journal of applied physiology, 88(1-2), 158-162.

Martin, J. C., & Spirduso, W. W. (2001). Determinants of maximal cycling power: crank length, pedaling rate and pedal speed. European Journal of Applied Physiology, 84, 413–418.

Martin, James C., Gardner, A. S., Barras, M., & Martin, D. T. (2006). Modeling sprint cycling using field-derived parameters and forward integration. Medicine and Science in Sports and Exercise, 38(3), 592–597.

Martin, J. C., Milliken, D. L., Cobb, J. E., McFadden, K. L., and Coggan, A. R. (1998). Validation of a mathematical model for road cycling power. J. Appl. Biomech. 14(3), 276-291.

Millet, G. P., & Candau, R. (2002). Facteurs mécaniques du coût énergétique dans trois locomotions humaines. Science & Sports, 17(4), 166–176.

Proctor, T. D., & Rowland, F. J. (1986). Development of standards for industrial safety helmets - The state of the art. Journal of Occupational Accidents, 8(3), 181–191.

Ryschon, T. W., & Stray-Gundersen, J. (1993). The effect of tyre pressure on the economy of cycling. Ergonomics, 36(6), 661–666.

Saris, W. H. M., Erp-Baart, M. A. van, Brouns, F., Westerterp, K. R., & Hoor, F. ten. (1989). Study on Food Intake and Energy Expenditure During Extreme Sustained Exercise: The Tour de France. International Journal of Sports Medicine, 10(S 1), S26–S31.

Schlichting, H., & Gersten, K. (2016). Boundary-Layer Theory. Springer, Berlin, Germany.

Wiles, J. D., Coleman, D., Tegerdine, M., & Swaine, I. L. (2006). The effects of caffeine ingestion on performance time, speed and power during a laboratory-based 1 km cycling time-trial. Journal of Sports Sciences, 24(11), 1165–1171.

Vogt, S., Heinrich, L., Schumacher, Y. O., Blum, A., Roecker, K., Dickhuth, H. H., & Schmid, A. (2006). Power output during stage racing in professional road cycling. Medicine and science in sports and exercise, 38(1), 147.

Zdravkovic, M. M., Ashcroft, M. W., Chisholm, S. J., & Hicks, N. (1996). Effect of cyclist’s posture and vicinity of another cyclist on aerodynamic drag. The engineering of sport, 1, 21–28.

Sidelko, S. (2009). Benchmark of aerodynamic cycling helmets using a refined wind tunnel test protocol for helmet drag research. Doctoral dissertation, Massachusetts Institute of Technology, 2007.

van Schenau, G. J. I., de Koning, J. J., & de Groot, G. (1994). Optimisation of sprinting performance in running, cycling and speed skating. Sports Medicine, 17(4), 259-275.

Blocken, B., van Druenen, T., Toparlar, Y., & Andrianne, T. (2018b). Aerodynamic analysis of different cyclist hill descent positions. Journal of Wind Engineering and Industrial Aerodynamics, 181, 27-45.






European Journal of Human Movement