Clustering classification of cyclists according to the acute fatigue outcomes produced by an ultra-endurance event

Authors

  • Jose Luis Sanchez-Jimenez 1 Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain.
  • Alexis Gandia-Soriano 1 Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain.
  • Pedro Perez-Soriano 1 Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain. 2 Research Network in Cycling and Woman (REDICYM), St: Avenida Conde de Torrefiel, 22, 46870, Ontinyent, Valencia, Spain.
  • Jose Ignacio Priego-Quesada 1 Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain. 2 Research Network in Cycling and Woman (REDICYM), St: Avenida Conde de Torrefiel, 22, 46870, Ontinyent, Valencia, Spain.
  • Alberto Encarnacion-Martinez 1 Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain. 2 Research Network in Cycling and Woman (REDICYM), St: Avenida Conde de Torrefiel, 22, 46870, Ontinyent, Valencia, Spain.

DOI:

https://doi.org/10.21134/eurjhm.2023.50.4

Keywords:

cycling, performance, cyclist profile, road cycling, fatigability

Abstract

This study aimed to analyze the differences between clusters obtained by the acute effect of fatigue after an ultra-endurance event in the internal and external load of cyclists. 26 volunteers participated in the study, and they were divided into the experimental group (N = 18; height: 177 ± 8 cm; body mass: 78.6 ± 10.3 kg) and the control group (N = 8; height: 176 ± 10 cm; body mass: 78.0 ± 15.7 kg). The experimental group completed a 12 h non-stop cycling event. Jump height, lactate, plasma antioxidant capacity, pain perception and fatigue perception were measured before and after the event. Cyclists of the experimental group were classified considering their training characteristics (recreational vs. competitive) and by conducting a non-supervised K-means clustering. The differentiation of cyclists according to training characteristics resulted in a lower distance covered by recreational than competitive cyclists (279.4 ± 39.7 km vs. 371.0 ± 71.7 km; ES ≥ 0.8; p < 0.01), although no differences were observed in the remaining variables between groups (p > 0.05). The clustering analysis provided two clusters. Cluster 2 suffered a greater jump height reduction (-3.3 ± 1.6 vs. 1.2 ± 0.8; ES ≥ 0.8; p < 0.001) and increased pain and fatigue perception (ES ≥ 0.5; p < 0.05) after the race than Cluster 1. In conclusion, counter-movement jump can differentiate the fatigue produced by a cycling ultra-endurance event and therefore, this non-invasive technique is useful in fatigue monitoring and recovery planification.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bescós, R., Rodríguez, F. A., Iglesias, X., Knechtle, B., Benítez, A., Marina, M., Padullés, J. M., Vázquez, J., & Torrado, P. (2011). Physiological demands of cyclists during an ultra-endurance relay race: A field study report. Chinese Journal of Physiology, 54(5), 339–346. https://doi.org/10.4077/CJP.2011.AMM065

Carins, S., Knicker, A. J., Thompson, M. W., & Sjøgaard, G. (2005). Evaluation of Models Used to Study Neuromuscular Fatigue: Exercise and Sport Sciences Reviews. Exercise and Sport Sciences Reviews, 33(1), 9–16.

Claudino, J. G., Cronin, J., Mezêncio, B., McMaster, D. T., McGuigan, M., Tricoli, V., Amadio, A. C., & Serrão, J. C. (2017). The countermovement jump to monitor neuromuscular status: A meta-analysis. Journal of Science and Medicine in Sport, 20(4), 397–402. https://doi.org/10.1016/J.JSAMS.2016.08.011

Clermont, C. A., Benson, L. C., Edwards, W. B., Hettinga, B. A., & Ferber, R. (2019). New Considerations for Wearable Technology Data: Changes in Running Biomechanics During a Marathon. Journal of Applied Biomechanics, 35(6), 401–409. https://doi.org/10.1123/JAB.2018-0453

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (Second). Lawrance Eribaum Associates.

Dantas, R., Caputo, F., Mendes, K., Sigwalt, A. R., Ghisoni, K., Lock, P. C., Remor, A. P., da Luz, D., Antonacci, L. G., & Latini, A. (2014). Increased platelet oxidative metabolism, blood oxidative stress and neopterin levels after ultra-endurance exercise. Journal of Sports Sciences, 32(1), 22–30. https://doi.org/10.1080/02640414.2013.797098

Dawson, D., Fletcher, A., & Hussey, F. (2015). Fatigue and Transportation Report To the Neville Committee. 29(1), 37–46.

Gandia, A., Carpes, F. P., Rodríguez, A., & Priego, J. I. (2020). Effect of cycling specialization on effort and physiological responses to uphill and flat cycling at similar intensity. European Journal of Sport Science, 1–7. https://doi.org/10.1080/17461391.2020.1785016

Gómez, M. C., Pallardó, F. V., Sastre, J., Viña, J., & Garcia, L. (2003). Allopurinol and Markers of Muscle Damage Among Participants in the Tour de France. JAMA, 289(19), 2503–2504. https://doi.org/10.1001/JAMA.289.19.2503-B

Hartigan, J. A. ., & Wong, M. . A. . (1979). Algorithm AS 136: A K-Means Clustering Algorithm Author ( s ): J Published by: Wiley for the Royal Statistical Society Stable URL : http://www.jstor.org/stable/2346830. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(1), 100–108.

Lecina, M., Castellar, C., Pradas, F., & López, I. (2022). 768-km Multi-Stage Ultra-Trail Case Study-Muscle Damage, Biochemical Alterations and Strength Loss on Lower Limbs. International Journal of Environmental Research and Public Health, 19(2). https://doi.org/10.3390/ijerph19020876

Lewis, N. A., Simpkin, A. J., Moseley, S., Turner, G., Homer, M., Redgrave, A., Pedlar, C. R., & Burden, R. (2020). Increased Oxidative Stress in Injured and Ill Elite International Olympic Rowers. International Journal of Sports Physiology and Performance, 15(5), 625–631. https://doi.org/10.1123/IJSPP.2019-0425

Lewis, N. A., Towey, C., Bruinvels, G., Howatson, G., & Pedlar, C. R. (2016). Effects of exercise on alterations in redox homeostasis in elite male and female endurance athletes using a clinical point-of-care test. Https://Doi.Org/10.1139/Apnm-2016-0208, 41(10), 1026–1032. https://doi.org/10.1139/APNM-2016-0208

Maunder, E., Seiler, S., Mildenhall, M. J., Kilding, A. E., & Plews, D. J. (2021). The Importance of ‘Durability’ in the Physiological Profiling of Endurance Athletes. Sports Medicine, 51(8), 1619–1628. https://doi.org/10.1007/S40279-021-01459-0/FIGURES/3

Mrakic, S., Gussoni, M., Moretti, S., Pratali, L., Giardini, G., Tacchini, P., Dellanoce, C., Tonacci, A., Mastorci, F., Borghini, A., Montorsi, M., & Vezzoli, A. (2015). Effects of mountain ultra-marathon running on ROS production and oxidative damage by micro-invasive analytic techniques. PLoS ONE, 10(11), 1–19. https://doi.org/10.1371/journal.pone.0141780

Mündermann, A., Nigg, B. M., Stefanyshyn, D. J., & Humble, R. N. (2002). Development of a reliable method to assess footwear comfort during running. Gait & Posture, 16(1), 38–45. https://doi.org/10.1016/S0966-6362(01)00197-7

Nikolaidis, P. T., Knechtle, B., Vancini, R., Gomes, M., & Sousa, C. (2021). Participation and Performance in the Oldest Ultramarathon-Comrades Marathon 1921-2019. International Journal of Sports Medicine, 42(7), 638–644. https://doi.org/10.1055/a-1303-4255

Ørtenblad, N., Westerblad, H., & Nielsen, J. (2013). Muscle glycogen stores and fatigue. The Journal of Physiology, 591(18), 4405–4413. https://doi.org/10.1113/JPHYSIOL.2013.251629

Pavlatou, M. G., Papastamataki, M., Apostolakou, F., Papassotiriou, I., & Tentolouris, N. (2009). FORT and FORD: two simple and rapid assays in the evaluation of oxidative stress in patients with type 2 diabetes mellitus. Metabolism, 58(11), 1657–1662. https://doi.org/10.1016/J.METABOL.2009.05.022

Priego, J. I., Kerr, Z. Y., Bertucci, W. M., & Carpes, F. P. (2018). The categorization of amateur cyclists as research participants: Findings from an observational study. Journal of Sports Sciences, 36(17), 2018–2024. https://doi.org/10.1080/02640414.2018.1432239

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(C), 53–65. https://doi.org/10.1016/0377-0427(87)90125-7

Scheer, V. (2019). Participation trends of ultra endurance events. Sports Medicine and Arthroscopy Review, 27(1), 3–7. https://doi.org/10.1097/JSA.0000000000000198

Schenk, K., Rauch, S., Procter, E., Grasegger, K., Mrakic-Sposta, S., & Gatterer, H. (2021). Changes in Factors Regulating Serum Sodium Homeostasis During Two Ultra-Endurance Mountain Races of Different Distances: 69km vs. 121km. Frontiers in Physiology, 12(November). https://doi.org/10.3389/fphys.2021.764694

Shoak, M., Knechtle, B., Knechtle, P., Rüst, C., Rosemann, T., & Lepers, R. (2013). Participation and performance trends in ultracycling. Open Access Journal of Sports Medicine, 4, 41. https://doi.org/10.2147/OAJSM.S40142

Smith, K. A., Kisiolek, J. N., Willingham, B. D., Morrissey, M. C., Leyh, S. M., Saracino, P. G., Baur, D. A., Cook, M. D., & Ormsbee, M. J. (2020). Ultra-endurance triathlon performance and markers of whole-body and gut-specific inflammation. European Journal of Applied Physiology, 120(2), 349–357. https://doi.org/10.1007/S00421-019-04279-3

Stelzer, I., Kröpfl, J. M., Fuchs, R., Pekovits, K., Mangge, H., Raggam, R. B., Gruber, H. J., Prüller, F., Hofmann, P., Truschnig-Wilders, M., Obermayer-Pietsch, B., Haushofer, A. C., Kessler, H. H., & Mächler, P. (2015). Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function. Scandinavian Journal of Medicine and Science in Sports, 25(5), e442–e450. https://doi.org/10.1111/SMS.12347

Suárez, V. C., Valdivielso, F. N., & Ravé, J. M. G. (2011). Changes in biochemical parameters after a 20-hour ultra-endurance kayak and cycling event. International SportMed Journal, 12(1), 1–6.

Tanner, R. K., Fuller, K. L., & Ross, M. L. R. (2010). Evaluation of three portable blood lactate analysers: Lactate Pro, Lactate Scout and Lactate Plus. European Journal of Applied Physiology, 109(3), 551–559. https://doi.org/10.1007/S00421-010-1379-9/FIGURES/5

Tomczak, M., & Tomczak, E. (2014). The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends in Sport Sciences, 1(21), 19–25.

Truppa, L., Guaitolini, M., Garofalo, P., Castagna, C., & Mannini, A. (2020). Assessment of Biomechanical Response to Fatigue through Wearable Sensors in Semi-Professional Football Referees. Sensors (Basel, Switzerland), 21(1), 1–15. https://doi.org/10.3390/S21010066

Turner, J. E., Bennett, S. J., Bosch, J. A., Griffiths, H. R., & Aldred, S. (2014). Ultra-endurance exercise: Unanswered questions in redox biology and immunology. Biochemical Society Transactions, 42(4), 989–995. https://doi.org/10.1042/BST20140120

van der Zwaard, S., de Ruiter, C. J., Jaspers, R. T., & de Koning, J. J. (2019). Anthropometric Clusters of Competitive Cyclists and Their Sprint and Endurance Performance. Frontiers in Physiology, 10, 1276. https://doi.org/10.3389/FPHYS.2019.01276/BIBTEX

Vitti, A., Nikolaidis, P. T., Villiger, E., Onywera, V., & Knechtle, B. (2020). The ‘New York City Marathon’: Participation and performance trends of 1.2M runners during half-century. Research in Sports Medicine (Print), 28(1), 121–137. https://doi.org/10.1080/15438627.2019.1586705

Wolff, S., Picco, J. M., Díaz, L., Valenzuela, P. L., Gonzalez, E., Santos, A., Matile, P., Wolff, D., Boraita, A., & Lucia, A. (2022). Exercise-Induced Cardiac Fatigue in Recreational Ultramarathon Runners at Moderate Altitude: Insights From Myocardial Deformation Analysis. Frontiers in Cardiovascular Medicine, 8(January), 1–8. https://doi.org/10.3389/fcvm.2021.744393

Wu, P. P. Y., Sterkenburg, N., Everett, K., Chapman, D. W., White, N., & Mengersen, K. (2019). Predicting fatigue using countermovement jump force-time signatures: PCA can distinguish neuromuscular versus metabolic fatigue. PLoS ONE, 14(7), 1–16. https://doi.org/10.1371/journal.pone.0219295

Yang, W. H., Park, H., Grau, M., & Heine, O. (2020). Decreased Blood Glucose and Lactate: Is a Useful Indicator of Recovery Ability in Athletes? International Journal of Environmental Research and Public Health, 17(15), 1–16. https://doi.org/10.3390/IJERPH17155470

Downloads

Published

2023-06-30

Issue

Section

Original Research

Most read articles by the same author(s)