Estimation of an elite road cyclist mechanical power and energy cost wearing standard and aero helmets: an analytical procedure and numerical simulations approach
DOI:
https://doi.org/10.21134/eurjhm.2021.46.573Keywords:
cycling; helmets; cfd; power; energy cost.Abstract
The aim of this study was to assess and compare by numerical simulations and analytical models the resistive forces, mechanical power and energy cost using two different types of road helmets (standard vs aero road helmet). An elite cyclist was scanned on the racing bicycle, wearing his competition gear and helmets. Numerical simulations by Computational Fluid Dynamics were carried-out at 11.11 m/s (40 km/h) and 20.83 m/s (75 km/) to extract the drag force. The mechanical power and energy cost were estimated by analytical procedures. The drag force were between 9.93 N and 66.96 N across the selected speeds and helmets. The power to overcome drag were 182.19 W and 1121.40 W. The total power lower and higher values were 271.05 W and 1558.02 W. The energy cost estimation was between 106.89 J/m and 381.40 J/m across the different speeds and helmets. The standard helmet imposed higher drag and demanded more power.
Downloads
Metrics
References
Aroussi, A., Kucukgokoglan, S., Pickering, S. J., & Menacer, M. (2001). Evaluation of four turbulence models in the interaction of multi burners swirling flows. 9.
Barbosa, T. M., Forte, P., Estrela, J. E., & Coelho, E. (2016). Analysis of the Aerodynamics by Experimental Testing of an Elite Wheelchair Sprinter. Procedia Engineering, 147, 2–6. https://doi.org/10.1016/j.proeng.2016.06.180
Barelle, C., Chabroux, V., & Favier, D. (2010). Modelling of the time trial cyclist projected frontal area incorporating anthropometric, postural and helmet characteristics. Sports Engineering, 12(4), 199–206. https://doi.org/10.1007/s12283-010-0047-y
Beaumont, F., Taiar, R., Polidori, G., Trenchard, H., & Grappe, F. (2018). Aerodynamic study of time-trial helmets in cycling racing using CFD analysis. Journal of Biomechanics, 67, 1–8. https://doi.org/10.1016/j.jbiomech.2017.10.042
Bertucci, W. M., Betik, A. C., Duc, S., & Grappe, F. (2012). Gross efficiency and cycling economy are higher in the field as compared with on an Axiom stationary ergometer. Journal of Applied Biomechanics, 28(6), 636–644.
Blocken, B., Defraeye, T., Koninckx, E., Carmeliet, J., & Hespel, P. (2013). CFD simulations of the aerodynamic drag of two drafting cyclists. Computers & Fluids, 71, 435–445. https://doi.org/10.1016/j.compfluid.2012.11.012
Blocken, B., van Druenen, T., Toparlar, Y., Malizia, F., Mannion, P., Andrianne, T., … Diepens, J. (2018). Aerodynamic drag in cycling pelotons: New insights by CFD simulation and wind tunnel testing. Journal of Wind Engineering and Industrial Aerodynamics, 179, 319–337. https://doi.org/10.1016/j.jweia.2018.06.011
Blocken, B., van Druenen, T., Toparlar, Y., & Andrianne, T. (2018b). Aerodynamic analysis of different cyclist hill descent positions. Journal of Wind Engineering and Industrial Aerodynamics, 181, 27-45.
Brühwiler, P. A., Buyan, M., Huber, R., Bogerd, C. P., Sznitman, J., Graf, S. F., & Rösgen, T. (2006). Heat transfer variations of bicycle helmets. Journal of Sports Sciences, 24(9), 999–1011. https://doi.org/10.1080/02640410500457877
Burke, E. (2003). High-tech Cycling. Human Kinetics. Champaing, IL.
Candau, R. B., Grappe, F., Menard, M., Barbier, B., Millet, G. Y., Hoffman, M. D., Rouillon, J. D. (1999). Simplified deceleration method for assessment of resistive forces in cycling. Medicine and Science in Sports and Exercise, 31(10), 1441–1447.
Chowdhury, H. (2012). Aerodynamic design of sports garments. Applied aerodynamics, 21-40. Lerner, J. C. & Boldes, U. (Ed.), IntechOpen, Rijeka, Croatia.
Debraux, P., Grappe, F., Manolova, A. V., & Bertucci, W. (2011). Aerodynamic drag in cycling: methods of assessment. Sports Biomechanics, 10(3), 197–218. https://doi.org/10.1080/14763141.2011.592209
Defraeye, T., Blocken, B., Koninckx, E., Hespel, P., & Carmeliet, J. (2010a). Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests. Journal of Biomechanics, 43(7), 1262–1268. https://doi.org/10.1016/j.jbiomech.2010.01.025
Defraeye, T., Blocken, B., Koninckx, E., Hespel, P., & Carmeliet, J. (2010b). Computational fluid dynamics analysis of cyclist aerodynamics: Performance of different turbulence-modelling and boundary-layer modelling approaches. Journal of Biomechanics, 43(12), 2281–2287. https://doi.org/10.1016/j.jbiomech.2010.04.038
di Prampero, P. E. (1986). The energy cost of human locomotion on land and in water. International Journal of Sports Medicine, 7(2), 55–72. https://doi.org/10.1055/s-2008-1025736
Dorel, S., Hautier, C. A., Rambaud, O., Rouffet, D., Praagh, E. V., Lacour, J.-R., & Bourdin, M. (2005). Torque and Power-Velocity Relationships in Cycling: Relevance to Track Sprint Performance in World-Class Cyclists. International Journal of Sports Medicine, 26(9), 739–746. https://doi.org/10.1055/s-2004-830493
Edwards, A. G., & Byrnes, W. C. (2007). Aerodynamic characteristics as determinants of the drafting effect in cycling. Medicine and Science in Sports and Exercise, 39(1), 170–176. https://doi.org/10.1249/01.mss.0000239400.85955.12
El Helou, N., Berthelot, G., Thibault, V., Tafflet, M., Nassif, H., Campion, F., Toussaint, J.F. (2010). Tour de France, Giro, Vuelta, and classic European races show a unique progression of road cycling speed in the last 20 years. Journal of Sports Sciences, 28(7), 789–796. https://doi.org/10.1080/02640411003739654
Ettema, G., & Lorås, H. W. (2009). Efficiency in cycling: a review. European Journal of Applied Physiology, 106(1), 1–14. https://doi.org/10.1007/s00421-009-1008-7
Faria, E. W., Parker, D. L., & Faria, I. E. (2005). The science of cycling: factors affecting performance - part 2. Sports Medicine, 35(4), 313–337. https://doi.org/10.2165/00007256-200535040-00003
Forte, P., Marinho, D. A., Morouço, P. G., & Barbosa, T. (2016). CFD analysis of head and helmet aerodynamic drag to wheelchair racing. 2016 1st International Conference on Technology and Innovation in Sports, Health and Wellbeing (TISHW), 1–6. https://doi.org/10.1109/TISHW.2016.7847775
Forte, P., Marinho, D. A., Morouço, P., Pascoal-Faria, P., & Barbosa, T. M. (2017). Comparison by computer fluid dynamics of the drag force acting upon two helmets for wheelchair racers. AIP Conference Proceedings, 1863(1), 520005. https://doi.org/10.1063/1.4992669
Forte, Pedro., Barbosa, T. M., & Marinho, D. A. (2015). Technologic Appliance and Performance Concerns in Wheelchair Racing – Helping Paralympic Athletes to Excel. New Perspectives in Fluid Dynamics, 101–121. Chaoqun Liu (Ed.), IntechOpen, Rijeka, Croatia.
Forte, Pedro, Marinho, D. A., Morais, J. E., Morouço, P. G., & Barbosa, T. M. (2018a). The variations on the aerodynamics of a world-ranked wheelchair sprinter in the key-moments of the stroke cycle: A numerical simulation analysis. PLOS ONE, 13(2), e0193658. https://doi.org/10.1371/journal.pone.0193658
Forte, P., Marinho, D. A., Morais, J. E., Morouço, P. G., & Barbosa, T. M. (2018b). Estimation of mechanical power and energy cost in elite wheelchair racing by analytical procedures and numerical simulations. Computer Methods in Biomechanics and Biomedical Engineering, 21(10), 585-592.
García-López, J., Rodríguez-Marroyo, J. A., Juneau, C.-E., Peleteiro, J., Martínez, A. C., & Villa, J. G. (2008). Reference values and improvement of aerodynamic drag in professional cyclists. Journal of Sports Sciences, 26(3), 277–286. https://doi.org/10.1080/02640410701501697
González‐Haro, C., Ballarini, P. A. G., Soria, M., Drobnic, F., & Escanero, J. F. (2007). Comparison of nine theoretical models for estimating the mechanical power output in cycling. British Journal of Sports Medicine, 41(8), 506–509. https://doi.org/10.1136/bjsm.2006.034934
Grappe, F., Candau, R., Barbier, B., Hoffman, M. D., Belli, A., & Rouillon, J.D. (1999). Influence of tyre pressure and vertical load on coefficient of rolling resistance and simulated cycling performance. Ergonomics, 42(10), 1361–1371. https://doi.org/10.1080/001401399185009
Grappe, F., Candau, R., Belli, A., & Rouillon, J. D. (1997). Aerodynamic drag in field cycling with special reference to the Obree’s position. Ergonomics, 40(12), 1299–1311.
Gross, A. C., Kyle, C. R., & Malewicki, D. J. (1983). The Aerodynamics of Human-powered Land Vehicles. Scientific American, 249(6), 142–153.
Kennedy, M. D., & Lampe, W. N. (2013). Applied Ergonomics of Cycling Performance. Handbook of Ergonomics in Sport and Exercise, 115-127. Youlian Hong (Ed.). Routledge, Abingdon, UK.
Kulfan, B. (2000). Assessment of CFD predictions of viscous drag. Fluids 2000 Conference and Exhibit, 2391. Drive, A. B (Ed.). American Institute of Aeronautics and Astronautics, Denver, CO, U.S.A.
Kyle, C. R., & Burke, E. (1984). Improving the racing bicycle. Mechanical engineering, 106(9), 34–45.
Lucia, A., Earnest, C., & Arribas, C. (2003). The Tour de France: a physiological review. Scandinavian Journal of Medicine & Science in Sports, 13(5), 275–283. https://doi.org/10.1034/j.1600-0838.2003.00345.x
Lukes, R. A., Chin, S. B., & Haake, S. J. (2005). The understanding and development of cycling aerodynamics. Sports Engineering, 8(2), 59–74. https://doi.org/10.1007/BF02844004
Belli, A., & Hintzy, F. (2002). Influence of pedalling rate on the energy cost of cycling in humans. European journal of applied physiology, 88(1-2), 158-162.
Martin, J. C., & Spirduso, W. W. (2001). Determinants of maximal cycling power: crank length, pedaling rate and pedal speed. European Journal of Applied Physiology, 84, 413–418.
Martin, James C., Gardner, A. S., Barras, M., & Martin, D. T. (2006). Modeling sprint cycling using field-derived parameters and forward integration. Medicine and Science in Sports and Exercise, 38(3), 592–597. https://doi.org/10.1249/01.mss.0000193560.34022.04
Martin, J. C., Milliken, D. L., Cobb, J. E., McFadden, K. L., and Coggan, A. R. (1998). Validation of a mathematical model for road cycling power. J. Appl. Biomech. 14(3), 276-291.
Millet, G. P., & Candau, R. (2002). Facteurs mécaniques du coût énergétique dans trois locomotions humaines. Science & Sports, 17(4), 166–176. https://doi.org/10.1016/S0765-1597(02)00139-9
Proctor, T. D., & Rowland, F. J. (1986). Development of standards for industrial safety helmets - The state of the art. Journal of Occupational Accidents, 8(3), 181–191. https://doi.org/10.1016/0376-6349(86)90004-0
Ryschon, T. W., & Stray-Gundersen, J. (1993). The effect of tyre pressure on the economy of cycling. Ergonomics, 36(6), 661–666. https://doi.org/10.1080/00140139308967927
Saris, W. H. M., Erp-Baart, M. A. van, Brouns, F., Westerterp, K. R., & Hoor, F. ten. (1989). Study on Food Intake and Energy Expenditure During Extreme Sustained Exercise: The Tour de France. International Journal of Sports Medicine, 10(S 1), S26–S31. https://doi.org/10.1055/s-2007-1024951
Schlichting, H., & Gersten, K. (2016). Boundary-Layer Theory. Springer, Berlin, Germany.
Wiles, J. D., Coleman, D., Tegerdine, M., & Swaine, I. L. (2006). The effects of caffeine ingestion on performance time, speed and power during a laboratory-based 1 km cycling time-trial. Journal of Sports Sciences, 24(11), 1165–1171. https://doi.org/10.1080/02640410500457687
Vogt, S., Heinrich, L., Schumacher, Y. O., Blum, A., Roecker, K., Dickhuth, H. H., & Schmid, A. (2006). Power output during stage racing in professional road cycling. Medicine and science in sports and exercise, 38(1), 147.
Zdravkovic, M. M., Ashcroft, M. W., Chisholm, S. J., & Hicks, N. (1996). Effect of cyclist’s posture and vicinity of another cyclist on aerodynamic drag. The engineering of sport, 1, 21–28.
Sidelko, S. (2009). Benchmark of aerodynamic cycling helmets using a refined wind tunnel test protocol for helmet drag research. Doctoral dissertation, Massachusetts Institute of Technology, 2007.
van Schenau, G. J. I., de Koning, J. J., & de Groot, G. (1994). Optimisation of sprinting performance in running, cycling and speed skating. Sports Medicine, 17(4), 259-275.
Blocken, B., van Druenen, T., Toparlar, Y., & Andrianne, T. (2018b). Aerodynamic analysis of different cyclist hill descent positions. Journal of Wind Engineering and Industrial Aerodynamics, 181, 27-45.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal is covered under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/). The rights of printing and reproduction by any way and means are the property of the European Journal of Human Movement, and by extension of each one of the authors of the articles.