Movement Regulation of Gymnastics Skills under varying Environmental Constraints



Introduction: Gymnasts perform complex skills on stationary apparatuses. The perceived structure of each apparatus in relation to gymnasts’ position, orientation and state of motion is one important factor that influences movement regulation. This study targeted the question, how gymnasts regulate complex skills as a function of varying apparatus constraints. Materials and Methods: Trained gymnasts performed three cartwheels in a row under two different experimental conditions of manipulated apparatus constraints (increased and decreased space available on a spring floor in order to perform the cartwheels). Gymnasts’ regulation strategy in the different experimental conditions was assessed. Results: Results revealed that gymnasts perfectly accommodated the manipulated apparatus constraints in the two experimental conditions, thereby supporting the note of perception-action coupling operating as a control mechanism when performing complex gymnastics skills under changed apparatus constraints. Distributing regulation between and within the cartwheels was different depending on the manipulation of apparatus constraints, and was related to the anticipated effort when achieving the movement goal. Conclusion: It can be stated that gymnasts regulate complex motor skills in a foreseeable (i.e., stationary) environment in a way that best suits the current situation in order to accommodate the current configuration of apparatus constraints.


Download data is not yet available.


Metrics Loading ...

Author Biography

Thomas Heinen, Leipzig University Faculty of Sport Science

Institute of Movement and Training Science in Sports I

Department of Gymnastics, Dance and Martial Arts


Arkaev, L. I., & Suchilin, N. G. (2004). Gymnastics. How to create champions. Oxford: Meyer & Meyer Sport (UK) Ltd.

Asseman, F., & Gahéry, Y. (2005). Effect of head position and visual condition on balance control in inverted stance. Neuroscience Letters, 375(2), 134–137. doi:10.1016/j.neulet.2004.10.085

Bardy, B. G., & Laurent, M. (1998). How is body orientation controlled during somersaulting? Journal of Experimental Psychology: Human Perception and Performance, 24, 963–977. doi: 10.1037/0096-1523.24.3.963

Bardy, B. G., & Warren, W. H. J. (1997). Visual control of braking in goal-directed action and sport. Journal of Sports Sciences, 15(6), 607–620. doi:10.1080/026404197367047

Berg, W. P., Wade, M. G., & Greer, N. L. (1994). Visual regulation of gait in bipedal locomotion: Revisiting Lee, Lishman, and Thomson (1982). Journal of Experimental Psychology: Human Perception and Performance, 20(4), 854–863. doi:10.1037/0096-1523.20.4.854

Bootsma, R. J., & van Wieringen, P. C. W. (1990). Timing an attacking forehand drive in table tennis. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 21–29. doi:10.1037/0096-1523.16.1.21

Boyce, B. A., Coker, C. A., & Bunker, L. K. (2006). Implications for variability of practice from pedagogy and motor learning perspectives: finding a common ground. Quest, 58, 330–343. doi:10.1080/00336297.2006.10491886

Bradshaw, E. J. (2004). Target-directed running in gymnastics: a preliminary exploration of vaulting. Sports Biomechanics, 3(1), 125–144. doi:10.1080/14763140408522834

Bradshaw, E. J., Maulder, P. S., & Keogh, J. W. L. (2007). Biological movement variability during the sprint start: performance enhancement or hindrance? Sports Biomechanics, 6(3), 246–260. doi:10.1080/14763140701489660

Bradshaw, E. J., & Sparrow, W. A. (2001). Effects of approach velocity and foot-target characteristics on the visual regulation of step length. Human Movement Science, 20(4–5), 401–426. doi:10.1016/S0167-9457(01)00060-4

Bringoux, L., Marin, L., Nougier, V., Barraud, P. A., & Raphel, C. (2000). Effects of gymnastics expertise on the perception of body orientation in the pitch dimension. Journal of Vestibular Research : Equilibrium & Orientation, 10(6), 251–258.

CCC-Software. (2008). utilius easyINSPECT. Markkleeberg.

Chi, M. T. H. (2006). Two approaches to the study of experts’ characteristics. In K. A. Ericsson, N. Charness, P. J. Feltovic, & R. R. Hoffman (Eds.), The Cambridge Handbook of Expertise and Expert Performance (pp. 21–30). Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9780511816796.002

Cornus, S., Laurent, M., & Laborie, S. (2009). Perception-movement coupling in the regulation of step lengths when approaching an obstacle. Ecological Psychology, 21(4), 334–367. doi:10.1080/10407410903320991

Čuk, I., & Karácsony, I. (2004). Vault. Methods, Ideas, Curiosities, History. Ljubljana: ŠTD Sangvinčki.

Davids, K., Button, C., Araújo, D., Renshaw, I., & Hristovski, R. (2006). Movement models from sports provide representative task constraints for studying adaptive behavior in human movement systems. Adaptive Behavior, 14(1), 73–95. doi:10.1177/105971230601400103

Davids, K., Button, C., & Bennett, S. (2008). Dynamics of skill acquisition. A constraints-led approach. Champaign, IL: Human Kinetics.

Fajen, B. R., Riley, M. A., & Turvey, M. T. (2009). Information, affordances, and the control of action in sport. International Journal of Sport Psychology, 40(1), 79–107.

Farrow, D., & Robertson, S. (2017). Development of a skill acquisition periodisation framework for high-performance sport. Sports Medicine, 47(6), 1043–1054. doi:10.1007/s40279-016-0646-2

FIG. (2017). 2017 - 2020 Code of Points. Women’s Artistic Gymnastics. Retrieved August 15, 2017, from CoP 2017-2020 EN.pdf

Gautier, G., Marin, L., Leroy, D., & Thouvarecq, R. (2009). Dynamics of expertise level: coordination in handstand. Human Movement Science, 28(1), 129–140. doi:10.1016/j.humov.2008.05.003

George, G. S. (2010). Championship gymnastics. Biomechanical techniques for shaping winners. Carlsbad, CA: Designs for Wellness Press.

Gibson, J. J. (1979). The ecological approach to visual perception. Hilldale, NJ: Erlbaum.

Heinen, T., Jeraj, D., Thoeren, M., & Vinken, P. M. (2011). Target-directed running in gymnastics: the role of the springboard position as an Informational source to regulate handsprings on vault. Biology of Sport, 28(4), 215–221. doi:10.5604/965480

Komi, P. V. (2003). Stretch-shortening cycle. In P. V. Komi (Ed.), Strength and power in sport (2nd ed., pp. 184–202). Oxford: Blackwell Science Ltd.

Larsen, R. J., Jackson, W. H., & Schmitt, D. (2016). Mechanisms for regulating step length while running towards and over an obstacle. Human Movement Science, 49, 186–195. doi:10.1016/j.humov.2016.07.002

Latash, M. L. (2008). Neurophysiological basis of movement (2nd ed.). Champaign, IL: Human Kinetics.

Lee, D. N., Lishman, J. R., & Thomson, J. A. (1982). Regulation of gait in long jumping. Journal of Experimental Psychology: Human Perception and Performance, 8(3), 448–459. doi:10.1037/0096-1523.8.3.448

Lee, D. N., Young, D. S., & Rewt, D. (1992). How do somersaulters land on their feet?. Journal of Experimental Psychology. Human Perception and Performance, 18(4), 1195–1202. doi:10.1037/0096-1523.18.4.1195

Mann, R. A., & Hagy, J. (1980). Biomechanics of walking, running, and sprinting. The American Journal of Sports Medicine, 8(5), 345–350. doi:10.1177/036354658000800510

Meeuwsen, H., & Magill, R. A. (1987). The role of vision in gait control during gymnastics vaulting. In T. B. Hoshizaki, J. H. Salmela, & B. Petiot (Eds.), Diagnostics, Treatment and Analysis of Gymnastic Talent (pp. 137–155). Montreal: Sport Psyche Editions.

Mester, J. (2000). Movement control and balance in earthbound movements. In B. M. Nigg, B. R. MacIntosh, & J. Mester (Eds.), Biomechanics and Biology of Movement (pp. 223–239). Champaign, IL: Human Kinetics.

Montagne, G., Cornus, S., Glize, D., Quaine, F., & Laurent, M. (2000). A perception-action coupling type of control in long jumping. Journal of Motor Behavior, 32(1), 37–43. doi:10.1080/00222890009601358

Panteli, F., Smirniotou, A., & Theodorou, A. (2016). Performance environment and nested task constraints influence long jump approach run: a preliminary study. Journal of Sports Sciences, 34(12), 1116–1123. doi:10.1080/02640414.2015.1092567

Patla, A. E. (1997). Understanding the roles of vision in the control of human locomotion. Gait and Posture, 5(1), 54–69. doi:10.1016/S0966-6362(96)01109-5

Patla, A. E. (2003). Strategies for dynamic stability during adaptive human locomotion. Engineering in Medicine and Biology Magazine, IEEE, 22(2), 48–52. doi:10.1109/MEMB.2003.1195695

Penitente, G. (2014). Performance Analysis of the female Yurchenko layout on the table vault. International Journal of Performance Analysis in Sport, 14(1), 84–97. doi:10.1080/24748668.2014.11868705

Prassas, S., Kwon, Y.-H., & Sands, W. A. (2006). Biomechanical research in artistic gymnastics: a review. Sports Biomechanics, 5(2), 261–91. doi:10.1080/14763140608522878

Raab, M., de Oliveira, R. F., & Heinen, T. (2009). How do people perceive and generate options? In M. Raab, J. G. Johnson, & H. Heekeren (Eds.), Progress in Brain Research. Mind and motion: the bidirectional link between thought and action (Vol. 174, pp. 49–59). Amsterdam: Elsevier. doi:10.1016/S0079-6123(09)01305-3

Rosenbaum, D. A., & Gregory, R. W. (2002). Development of a method for measuring movement-related effort. Biomechanical considerations and implications for Fitts’ law. Experimental Brain Research, 142(3), 365–373. doi:10.1007/s00221-001-0925-4

Schöllhorn, W. I., Hegen, P., & Davids, K. (2012). The nonlinear nature of learning - a differential learning approach. The Open Sports Sciences Journal, 5(1), 100–112. doi:10.2174/1875399X01205010100

Sevrez, V., Berton, E., Rao, G., & Bootsma, R. J. (2009). Regulation of pendulum length as a control mechanism in performing the backward giant circle in gymnastics. Human Movement Science, 28(2), 250–62. doi:10.1016/j.humov.2008.10.002

Slobounov, S., Hallett, M., & Newell, K. M. (2004). Perceived effort in force production as reflected in motor-related cortical potentials. Clinical Neurophysiology, 115(10), 2391–2402. doi:10.1016/j.clinph.2004.05.021

Slobounov, S., & Newell, K. M. (1996). Postural dynamics in upright and inverted stances. Journal of Applied Biomechanics, 12(2), 185–196. doi:10.1123/jab.12.2.185

Svinin, M., Ohta, K., Luo, Z. W., & Hosoe, S. (2003). Towards understanding of human movements constrained by the external environment. In Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on (Vol. 1, pp. 155–161). doi:10.1109/IROS.2003.1250621

Turoff, F. (1991). Artistic gymnastics. A comprehensive guide to performing and teaching skills for beginners and advanced beginners. Dubuque, IA: Wm. C. Brown Publishers.

Turvey, M. T. (1992). Affordances and prospective control: an outline of the ontology. Ecological Psychology, 4(3), 173–187. doi:10.1207/s15326969eco0403_3

Vickers, J. N. (2007). Perception, cognition, and decision training. The quiet eye in action. Champaign, IL: Human Kinetics.

Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358–389. doi:10.1037/0033-295X.113.2.358

Yeadon, M. R. (2000). Aerial movement. In V. M. Zatsiorsky (Ed.), Biomechanics in sport. Performance enhancement and injury prevention. (pp. 273–283). Oxford: Blackwell Science Ltd.

Yilmaz, E. H., & Warren, W. H. (1995). Visual control of braking: A test of the ṫ hypothesis. Journal of Experimental Psychology: Human Perception and Performance, 21(5), 996–1014. doi:10.1037/0096-1523.21.5.996






Original Research