The Acute Effects of The Voluntary Pre-Activity Hyperventilation on Jump and Sprint Performance in Female Volleyball Players


  • Celil Kaçoğlu Anadolu University, Sport Sciences Faculty, Department of Coaching Education
  • Mehmet Miraç Işik Anadolu University, Sport Sciences Faculty, Department of Coaching Education


Objective: The purpose of the present study was to investigate the acute effects of pre-activity brief maximal voluntary hyperventilation (HP) on the jumping and sprint performances. Methods: Fourteen young female volleyball players (16.7 ± 1.2 years; 61.1 ± 10.3 kg; 173 ± 8 cm) voluntarily participated in this study. All subjects performed 30s HP protocol followed by 30s passive rest. After the rest period, participants applied jump or sprint performance. All participants practiced HP and normal ventilation (NV) conditions in each test sections and conditions on separate days. Paired sample T-test was used to determine whether there was a significant mean difference between performance values with HP condition compared to NV. Results: The results of the analyses showed that there were significant differences in 10-m sprint times between HP and NV (p<0.05). However, no significant differences were determined in countermovement jump, squat jump heights and 20-m sprint time between conditions. Conclusion: The findings of the present study suggested that the pre-activity HP protocol can be effective for 10-m sprint time in moderately trained young female volleyball players. These results indicated that pre-activity HP may be useful to enhance acute athletic performance or training effectiveness.


Download data is not yet available.


Metrics Loading ...


Brown, E. B. (1953). Physiological effects of hyperventilation. Physiological Reviews, 33(4), 445-471. doi:

Carr, A. J., Hopkins, W. G. & Gore, C. J. (2011). Effects of acute alkalosis and acidosis on performance. Sports medicine, 41(10), 801-814. doi: 10.2165/11591440-000000000-00000

Chamari, K., Ahmaidi, S., Blum, J., Hue, O., Temfemo, A., Hertogh, C., Mercier, B., Prefaut, F. & Mercier, J. (2001). Venous blood lactate increase after vertical jumping in volleyball athletes. European journal of applied physiology, 85(1-2), 191-194. doi:10.1007/s004210100415

Clarke, R. S. J. (1952). The effect of voluntary overbreathing on the blood flow through the human forearm. J. Physiol. 118, 537-544. doi: 10.1113/jphysiol.1952.sp004815

Cisar, C.J. & Corbelli, J. (1989). The volleyball spike: A kinesiological and physiological analysis with recommendations for skill development and conditioning programs. Strength & Conditioning Journal, 11(1), 4-9. doi: 10.1519/0744-0049(1989)011<0004:TVSAKA>2.3.CO;2

Driss, T., Vandewalle, H. & Monod, H. (1998). Maximal power and force-velocity relationships during cycling and cranking exercises in volleyball players. J Sports Med Phys Fitness, 38, 286-93. Retrieved from

Fujii, N., Tsuchiya, S.I., Tsuji, B., Watanabe, K., Sasaki, Y., Nishiyasu, T. (2015). Effect of voluntary hypocapnic hyperventilation on the metabolic response during Wingate anaerobic test. European journal of applied physiology, 115(9), 1967-1974. doi:10.1007/s00421-015-3179-8

Goldfinch, J., Mc Naughton, L. & Davies, P. (1988). Induced metabolic alkalosis and its effects on 400-m racing time. European journal of applied physiology and occupational physiology, 57(1), 45-48. doi:10.1007/BF00691236

Gonzalez, C., Urena Espa, A., Llop, F., Garcia, J.M., Martin, A. & Navarro, F. (2005). Physiological characteristics of libero and central volleyball players. Biology of Sport, 22(1) Retrieved from

Hilbert, M., Shushakov, V., Maassen, N. (2012). The influence of respiratory acid-base changes on muscle performance and excitability of the sarcolemma during strenuous intermittent hand grip exercise. Journal of Applied Physiology, 112(4), 571-579. doi: 10.1152/japplphysiol.00869.2010

Jacob, C., Moussa, E., Keyrouz, C. & Zouhal, H. (2008). Effect of a preexercise voluntary hyperventilation on performance measured during the Wingate test. Science and Sports, 23(2), 83-86. doi: 10.1016/j.scispo.2007.09.012

Jacob, C., Keyrouz, C., Bideau, N., Nicolas, G., El Hage, R., Bideau, B. & Zouhal, H. (2015). Pre-exercise hyperventilation can significantly increase performance in the 50-meter front crawl. Science & Sports, 30(3), 173-176. doi: 10.1016/j.scispo.2015.02.006

Kairouz C., Jacob C., El Hage R., Khoury G., Moussa E., Zouhal H., (2013). Effect of hyperventilation followed by a 1 min recovery on the Wingate performance. Science & Sports, 28, e15-e18 doi: 10.1016/j.scispo.2012.08.001

Kasabalis, A., Douda, H. & Tokmakidis, S. P. (2005). Relationship between anaerobic power and jumping of selected male volleyball players of different ages. Perceptual and motor skills, 100(3), 607-614. doi: 10.2466/pms.100.3.607-614

Künstlinger, U., Ludwig, H. G. & Stegemann, J. (1987). Metabolic changes during volleyball matches. International Journal of Sports Medicine, 8(05), 315-322. doi: 10.1055/s-2008-1025676

Leithäuser, R. M., Böning, D., Hütler, M. & Beneke, R. (2016). Enhancement on Wingate Anaerobic Test Performance with Hyperventilation. International journal of sports physiology and performance, 11(5), 627-634. doi: 10.1123/ijspp.2015-0001

McArdle, W. D., Katch, F. I. & Katch, V. L. (2006). Essentials of exercise physiology. 3rd Ed. (pp.128). Baltimore, USA, Lippincott Williams & Wilkins.

McArdle, W. D., Katch, F. I. & Katch, V. L. (2010). Exercise physiology: Nutrition, energy, and human performance. (pp.265, 289). Philadelphia, USA, Lippincott Williams & Wilkins

McArdle, W. D., Katch, F. I. & Katch, V. L. (2014). Exercise physiology: Nutrition, energy, and human performance (8th ed.). Amsterdam, The Netherlands: Wolters Kluwer.

Miller, P., Robinson, A. L., Sparks, S. A., Bridge, C. A., Bentley, D. J. & McNaughton, L. R. (2016). The effects of novel ingestion of sodium bicarbonate on repeated sprint ability. The Journal of Strength & Conditioning Research, 30(2), 561-568. doi: 10.1519/JSC.0000000000001126

Morrow, J. A., Fell, R. D., Gladden, L. B. (1988). Respiratory alkalosis: No effect on blood lactate decline or exercise performance. Eur J Appl Physiol Occup Physiol, 58(1):175-181 doi: 10.1007/BF00636623 •

Peart, D. J., Siegler, J. C. & Vince, R. V. (2012). Practical recommendations for coaches and athletes: A meta-analysis of sodium bicarbonate use for athletic performance. The Journal of Strength & Conditioning Research, 26(7), 1975-1983. doi: 10.1519/JSC.0b013e3182576f3d

Polglaze, T. & Dawson, B. (1992). The physiological requirements of the positions in state league volleyball. Sports Coach, 15, 32-37. Retrieved from

Portington, K. J., Pascoe, D. D., Webster, M. J., Anderson, L. H., Rutland, R. R. & Gladden, L. B. (1998). Effect of induced alkalosis on exhaustive leg press performance. Medicine and science in sports and exercise, 30(4), 523-528. doi: 10.1097/00005768-199804000-00009

Robergs, R., Hutchinson, K., Hendee, S., Madden, S., Siegler, J.(2005) . Influence of pre-exercise acidosis and alkalosis on the kinetics of acid-base recovery following intense exercise. Int. J. Sport. Nutr. Exerc. Metab. 15(1):59-74. doi: 10.1123/ijsnem.15.1.59

Sakamoto, A., Naito, H., Chow, C. M. (2014). Hyperventilation as a strategy for improved repeated sprint performance. The Journal of Strength & Conditioning Research, 28(4), 1119-1126. doi: 10.1519/JSC.0b013e3182a1fe5c

Sakamoto, A., Naito, H. & Chow, C.M. (2015). Hyperventilation-induced respiratory alkalosis falls short of countering fatigue during repeated maximal isokinetic contractions. European journal of applied physiology, 115(7), 1453-1465. doi: 10.1007/s00421-015-3134-8

Sheppard, J. M., Gabbett, T. J. & Stanganelli, L. C. R. (2009). An analysis of playing positions in elite men's volleyball: Considerations for competition demands and physiologic characteristics. The Journal of Strength & Conditioning Research, 23(6), 1858-1866. doi: 10.1519/JSC.0b013e3181b45c6a

Sheppard, J. M., Gabbett, T. J. & Riggs, M. P. (2013). Indoor and beach volleyball players. In R. Tanner & C. Gore (Eds.), Physiological tests for elite athletes (pp. 475-486). Champaign, IL: Human Kinetics.

Siegler, J. C. & Gleadall-Siddall, D. O. (2010). Sodium bicarbonate ingestion and repeated swim sprint performance. The Journal of Strength & Conditioning Research, 24(11), 3105-3111. doi: 10.1519/JSC.0b013e3181f55eb1

Siegler, J. C., Hirscher, K. (2010). Sodium bicarbonate ingestion and boxing performance. The Journal of Strength & Conditioning Research, 24(1), 103-108. doi: 10.1519/JSC.0b013e3181a392b2

Siegler, J.C., McNaughton, L.R., Midgley, A.W., Keatley, S., Hillman, A. (2010). Metabolic alkalosis, recovery and sprint performance. International journal of sports medicine, 31(11), 797. doi: 10.1055/s-0030-1261943

Stringer, W., Casaburi, R. & Wasserman, K. (1992). Acid-base regulation during exercise and recovery in humans. Journal of Applied Physiology, 72(3), 954-961. Retrieved from

Sutton, J.R., Jones, N.L. & Toews, C.J. (1981). Effect of pH on muscle glycolysis during exercise. Clinical Science, 61(3), 331-338. doi: 10.1042/cs0610331

Thomas, C., Delfour-Peyrethon, R., Bishop, D. J., Perrey, S., Leprêtre, P. M., Dorel, S. & Hanon, C. (2016). Effects of pre-exercise alkalosis on the decrease in dot {V} O_ {2} at the end of all-out exercise. European journal of applied physiology, 116(1), 85-95. doi: 10.1007/s00421-015-3239-0

Van Montfoort, M. C., Van Dieren, L., Hopkins, W. G. & Shearman, J. P. (2004). Effects of ingestion of bicarbonate, citrate, lactate, and chloride on sprint running. Medicine and Science in Sports and Exercise, 36(7), 1239-1243. doi: 10.1249/01.MSS.0000132378.73975.25

Wu, C. L., Shih, M. C., Yang, C. C., Huang, M. H. & Chang, C. K. (2010). Sodium bicarbonate supplementation prevents skilled tennis performance decline after a simulated match. Journal of the International Society of Sports Nutrition, 7(1), 33. doi: 10.1186/1550-2783-7-33






Original Research